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Implementation of Polar Form Algorithms with
the Rectangular Form Complex Number

Gong Chengming, Member, IEEE

Abstract—Power system analysis algorithms under polar co-
ordinates are traditionally implemented with the polar form
complex number, which is abstracted as phase and magnitude.
This paper addresses a method to implement the polar form
algorithms with the common rectangular form complex number,
which is abstracted as real and imaginary parts. The key
points of the addressed method are to express the derivatives to
polar components under rectangular coordinates, and to rotate
and stretch a complex number under rectangular coordinates.
With the addressed method, the polar form algorithms can be
implemented with direct complex operations and will share more
components with rectangular form algorithms.

Index Terms—hybrid coordinates, iteration algorithm, power
system analysis

I. INTRODUCTION

AS the phase and magnitude of a voltage in the power
system have clear physical meanings, implementing the

power system algorithms under polar coordinates has many ad-
vantages; e.g., the PV buses in power flow and measurements
of phase and magnitude in state estimation can be processed
directly under polar coordinates. The polar form algorithms
have been widely introduced and used.

The traditional implementation of polar form algorithms
differs greatly with the rectangular form algorithms [1] [2] [3]
[4]. Firstly, the definition and abstraction of complex numbers
is different. In the rectangular form algorithms, the complex
number is defined by real and imaginary parts, while in the
polar form algorithms, it is defined by phase and magnitude.
Secondly, the expressions of power flows and their derivatives
are different. In the rectangular form algorithms, the power
flows and derivatives can be expressed with direct complex
operations, and the expressions are very concise. In the polar
form algorithms, they have to be expressed with triangular
operations in the real domain and thus become much more
complicated.

It will be advantageous to implement the polar form algo-
rithms with the rectangular form complex number. Though
many high-level programming languages provide complex
data types (e.g., in FORTRAN) or standard complex classes
(e.g., in C++) for direct complex operations, the traditional
implementation of polar form algorithms cannot use these
complex data types or classes. As for the implementation
with the rectangle form complex number, the power flows and
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derivatives will be expressed with these types or classes in the
complex domain, and the complex operation will be performed
as a whole. Furthermore, the implementation with rectangular
form complex numbers will share more components with the
rectangular form algorithms. From the software engineering
point of view, this kind of sharing is helpful for improving
the quality of software design and consequently improving
the productivity and reliability of the software.

This paper addresses a solution for the problem of imple-
menting the polar form algorithms with the rectangular form
complex number. The paper firstly formulates the polar form
algorithms more generally, and analyzes what operations are
needed for an abstracted complex type to support the polar
form algorithms. The paper then addresses how to implement
these operations for a rectangular form complex number.
Lastly, reformed implementation of polar form algorithms with
the rectangular form complex number is addressed.

II. FORMULATION

Iteration algorithms based on complex variables are widely
used in power system analysis. For certain problems such as
power flow, state estimation, etc., corresponding non-linear
equations are built and attempted to be solved by iteratively
updating the state variables with local linear solutions in
limited steps. The complex bus voltages are normally selected
as state variables, and the algorithms may be implemented
under rectangular coordinates or polar coordinates.

The traditional implementation under polar coordinates up-
dates the phase vector θ and magnitude vector |V| iteratively
and calculate the power flows and derivatives based on θ and
|V|. The implementations can be generally formulated as:

1) Initialize state variables θ(0) and |V|(0);
2) Try to find converged solutions in limited cycles of

iteration:
a) solve ∆θ(k) and ∆|V|(k), based on power flows

and derivatives according to certain problems;
b) Update the state variables, let θ(k+1) = θ(k) +

∆θ(k+1) and |V|(k+1) = |V|(k) + ∆|V|(k).
In this kind of implementation, the complex number, which

is abstracted as phase and magnitude, cannot be handled as
a whole to calculate the power flows and derivatives, and
the expressions of power flows and derivatives have to be
expanded as explicit triangular operations.

For example, given a general branch which links bus i and
bus j and whose two-terminal model is(

yii yij

yji yjj

)
=

(
gii + jbii gij + jbij

gji + jbji gjj + jbjj

)
, (1)
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the active power flow at the i-side from bus i to bus j will be

pij = |Vi|2 gii + |Vi| |Vj | (gij cos θij + bij sin θij), (2)

where θi, |Vi|, θj , and |Vj | are the voltage phases and
magnitudes at bus i and bus j respectively, and θij = θi− θj .

It is not difficult to deduce from (2) the derivatives of pij to
the voltage phase or the magnitude at both ends. The derivative
of pij to the phase at the i-side is given below as an example
[4].

∂pij

∂θi
= |Vi||Vj |(bij cos θij − gij sin θij). (3)

When observing this implementation, a question may arise
as to whether it is possible to simplify such expressions as
(2) and (3) and unify them with the similar expressions in
rectangular form implementations. This is the problem this
paper has studied and solved.

Actually, the essence of the polar form algorithms is to
update the bus voltages with phase changes and magnitude
changes. The features of the polar form algorithms have
nothing to do with how the complex voltages are expressed (as
rectangular form or polar form) and how the changes of phase
and magnitude are calculated. Therefore, the polar algorithms
can be formulated more generally as:

1) Initialize state variables V(0);
2) Try to find converged solutions in limited cycles of

iteration:
a) solve ∆θ(k) and ∆|V|(k), based on power flows

and derivatives according to certain problems;
b) Update the state vector V(k) to V(k+1) by solved

∆θ(k) and ∆|V|(k).
It can be seen from the new formulation that, theoretically,

any complex abstraction can be used to implement the polar
algorithm, as long as it can be utilized to calculate the power
flows and derivatives and can be updated with changes of
phase and magnitude. The polar form complex number is not
the only option for implementing the polar form algorithms.
As the rectangular form complex can be operated directly in
modern programming languages, the implementations based
on it may have some advantages that the implementations
based on the polar form complex number do not have. The
next two sections will further discuss how the rectangular
form complex number can easily meet the demand in the latter
formulation of polar form algorithms.

III. POWER FLOWS AND THEIR DERIVATIVES TO POLAR
COMPONENTS UNDER RECTANGULAR COORDINATES

When the complex voltages are expressed in rectangular
coordinates, it is convenient to calculate the power flows in
the same way as in the rectangular form algorithms; e.g.,
compared with (2), the complex current and complex power
at the i-side from bus i to bus j will be calculated as

Iij = Viyii + Vjyij , (4)

and
Sij = ViI

∗
ij . (5)

To further calculate the derivatives, a general form will first
be discussed. For any continuous and smooth function with
the complex voltage vector V as the free variables, f(V), the
partial derivatives of f(V) to any component of a voltage is
able to be expressed as

∂f(V)
∂xi

=
∂f(V)

∂Vi

∂Vi

∂xi
, (6)

where xi, one component of voltage Vi, may be the real part
ei or the imaginary part fi under rectangular coordinates, the
phase θi or the magnitude |Vi| under polar coordinates.

In (6), the problem of ∂f(V)
∂xi

is decomposed into two parts.
One part solves ∂f(V)

∂Vi
, which will handle the complex number

as a whole and will be shared by any form of xi. The other
part calculates ∂Vi

∂xi
, which only relates to the complex voltage

Vi itself. Calculation of the derivatives and unification of the
calculation under different coordinates will be facilitated by
the decomposition.

For calculation under polar coordinates, as Vi = |Vi| ejθi ,
the second part ∂Vi

∂xi
will be

∂Vi

∂θi
= |Vi| jejθi = jVi, (7)

and
∂Vi

∂ |Vi| = ejθi =
Vi

|Vi| . (8)

With (6), (7), and (8), derivatives of all power flows to
a polar component of a complex voltage can be deduced.
Compared with (3), the derivatives of Iij and Sij to phase
angle at bus i are deduced from (4), (5), and given below as
examples.

∂Iij

∂θi
= (

∂Vi

∂Vi
yii +

∂Vj

∂Vi
yij)

∂Vi

∂θi
= jViyii (9)

and
∂Sij

∂θi
=

∂Vi

∂θi
I∗ij + Vi

∂I∗ij
∂θi

= jViV
∗
j y∗ij . (10)

The complex numbers are handled as a whole in (9) and (10)
so the calculations can be implemented conveniently with the
rectangular form complex numbers. Higher-order derivatives
can be further deduced in the same way. It can be proved that
the real part in (10) is equivalent to (3). The proof is given in
the appendix.

IV. UPDATING POLAR FORM COMPLEX NUMBER WITH
PHASE AND MAGNITUDE CHANGES

Updating a complex number by phase change and magni-
tude change can be regarded as rotating and stretching the
complex number. Regardless of the form of the complex
number, the rotation and stretching can be expressed as
corresponding operators. The operator of rotating a complex
V

(k)
i with ∆θ

(k)
i is

r
(k)
i = ej∆θ

(k)
i = cos ∆θ

(k)
i + j sin∆θ

(k)
i , (11)

and the operator of stretching a complex V
(k)
i in length

∆ |Vi|(k) is
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s
(k)
i = 1 +

∆ |Vi|(k)

|Vi|(k)
, |Vi|(k) 6= 0. (12)

With (11) and (12), updating the complex voltage by ∆θk
i

and ∆ |Vi|(k) will be

V
(k+1)
i = s

(k)
i r

(k)
i V

(k)
i . (13)

It is the same case as in (9) and (10): the complex voltage
in (13) is handled as a whole and can be easily operated under
rectangular coordinates.

V. REFORMED IMPLEMENTATION

By applying the results in the previous two sections to the
reformed formulation in section II, the polar form algorithms
can be implemented with rectangular form complex numbers.
The final formulation is expressed as

1) Initialize state variables V(0);
2) Try to find converged solutions in limited cycles of

iteration:

a) solve ∆θ(k) and ∆|V|(k), based on power flows
and derivatives according to certain problems. The
power flows and derivatives will be calculated by
expressions like (4), (5), (9), and (10);

b) Update the state vector V(k) to V(k+1) according
to (11) and (12).

This implementation will benefit from using direct complex
operations provided by a modern programming language.
At the same time, this implementation will share the same
expressions of power flows with rectangular form algorithms,
and the expressions of derivatives differ in the rectangular form
and polar form algorithms only at the second part in the right
side of (6).

VI. CONCLUSION

This paper proposes a method to implement the polar form
power system analysis algorithms with the rectangular form
complex number. The proposed method can both benefit from
the direct complex operation and share more common com-
ponents with rectangular form algorithms. It is expected that
the productivity and reliability of the power system analysis
software can be notably improved by using the proposed
method.

A power flow program has been implemented using the
proposed method, and the results have been verified as correct.
Other aspects such as efficiency need to be further compared
with the traditional implementations.

APPENDIX

Proof of the equivalence of (3) and the real part in (10).

Proof:

ViV
∗
j = |Vi| ejθi |Vj | e−jθj

= |Vi| |Vj | (cos θij + j sin θij)
⇓

∂Sij

∂θi
= jViV

∗
j y∗ij

= j |Vi| |Vj | (cos θij + j sin θij)(gij − jbij)
= |Vi| |Vj | (cos θij + j sin θij)(bij + jgij)
⇓

∂pij

∂θi
= Re(

∂Sij

∂θi
)

= |Vi| |Vj | (bij cos θij − gij sin θij)
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